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EM-ANN Models for Microstrip Vias
and Interconnects in Dataset Circuits

Paul M. Watson and Kuldip C. Gupta, Fellow, IEEE

Abstract— A novel approach for accurate and efficient mod-
eling of monolithic microwave/millimeter wave integrated cir-
cuit (MMIC) components by using electromagnetically trained
artificial neural network (EM-ANN) software modules is pre-
sented. Full-wave EM analysis is employed to characterize MMIC
components. Structures for simulation are chosen using design
of experiments (DOE) methodology. EM-ANN models are then
trained using physical parameters as inputs and S-parameters
as outputs. Once trained, the EM-ANN models are inserted into
a commercial microwave circuit simulator where they provide
results approaching the accuracy of the EM simulation tool used
for characterization of the MMIC components without increasing
the analysis time significantly. The proposed technique is capable
of providing simulation models for MMIC components where
models do not exist or are not accurate over the desired region of
operation. The approach has been verified by developing models
for microstrip vias and interconnects in dataset circuits. A new
hybrid (AS) modeting approach which makes use of existing
approximate models for components is introduced and shown to
be a more efficient method for developing EM-ANN models. An
example of using EM-ANN models to optimize the component
geometry is included.

I. INTRODUCTION

E F F O R T S T O lower the cost and reduce the

weightlvolume of monolithic microwavehnillimeter wave

integrated circuits (MMIC’s) have resulted in high-density

and dataset circuits where a large number of via interconnects
are used. With this increased complexity and higher operating

frequencies, accurate and efficient characterizations of via
interconnect discontinuities and single-layer ground vias must

be carried out in order to achieve accurate simulation results

[1]. Several recent efforts have focused on the analytical and

numerical evaluation of via discontinuities using quasi-static

and full wave techniques [1]–[ 17]. Quasi-static models are

valid only at low frequencies. Full-wave characterization can

lead to accurate results, but at much higher computational

expense which prevents their use in practical interactive CAD.
This paper presents a new methodology for accurate mod-

eling of via interconnects using electromagnetically trained
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artificial neural networks (EM-ANN’ s). In the past, artificial

neural networks (ANN’s) have been used only to a very

limited extent in the microwave engineering area. Applications

reported in literature include: automatic impedance match-

ing [18], microstrip circuit design [19], microwave circuit

analysis and optimization [20], [21], modeling of GaAs MES-

FET process and device characteristics [22]–[24], and most
recently, modeling of spiral inductors [25] and microstrip

grounding vias [26]. We make use of the ANN approach

for component modeling. The proposed technique uses the

Design of Experiments (DOE) methodology to identify var-

ious component parameter values for which electromagnetic

simulations need to be carried out in order to capture important

input-output relationships. Use of the DOE approach allows

for a minimum number of EM simulations that need to be

performed. Simulation results are then used to train the ANN

model, using physical parameters as inputs, to provide the

correct S-parameter response over the desired frequency range.

Since ANN’s have been shown to have the ability to learn

from data, to generalize patterns in data, and to model highly

nonlinear relationships [27], [28], the trained model is valid

for the entire ranges of the input variables. It may be noted

that no circuit model (in terms of lumped inductor, etc.) is

involved in the derivation of ANN models discussed here.

Once the EM-ANN model has been trained, it is easily inserted

into a commercial microwave circuit simulator. Optimization

techniques can also be used with the trained EM-ANN model

to find the optimal component structure for a given application.
These models prove to be extremely useful in situations where

an element is used many times with varying geometrical

dimensions.

Applications of this methodology for modeling via elements

in microstrip circuits and dataset via interconnects are pre-

sented. Two methods called complete and hybrid EM-ANN
modeling are proposed. With the complete modeling, the EM
simulator data is used to train the ANN model ab initio,
without any additional information from existing approximate
models. In the second method called hybrid EM-ANN mod-

eling, existing approximate models are used to construct the
input–output relationships of the component model. In this

case, the EM simulator data is used to develop an ANN
software module to correct for the difference between the
approximate model and the EM simulation results. Integration

of the EM-ANN models with a commercial microwave circuit
simulator and structure optimization using these models are
also demonstrated.
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Fig. 1. Artificial neural network architecture.

II. ANN MODELING

A. ANN Model Structure and Learning

The ANN architecture used in this work is shown in Fig. 1
and consists of an input layer, an output layer, and one hidden
layer. It is a dataset, feedforward ANN, utilizing the error
backpropagation learning algorithm [28]. The hidden layer
allows modeling of complex input–output relationships. Input
vectors are presented to the input layer and fed through the
network which then yields the output vector. Mapping of the
input–output relationships can be represented by [29]

Y= F(W2 .F(l’vl .x+ Bl) +Bz) (1)

where X is the input vector, WI and Wz are the weight
matrices between the input and hidden layers and between the
hidden and output layers, respectively; 131 and B2 are bias
matrices, and Y is the output vector. F’(u) is the nonlinear
activation function of each artificial neuron which for this
work is taken to be

F(u) =
1

1 + exp(–~”
(2)

The ANN learns relationships among sets of input–output
data which are characteristic of the component under consid-
eration. First, input vectors are presented to the input neurons
and output vectors are computed. ANN outputs are then
compared to desired outputs and errors are computed. Error
derivatives are then calculated and summed up for each weight
until all training sets have been presented to the network.
These error derivatives are then used to update the weights
for neurons in the model. Training proceeds until errors are
lower than prescribed values. Details of the training algorithm
are given in [30].

B. ANN Model Training

A simultaneous training and testing methodology is used
while training the EM-ANN models [31 ]. To begin with, sim-
ulated data is separated into three datasets: 1) one for training;
2) one for simultaneous testing and additional training; and

3) the third for independent model verification. In this way,
testing set errors can be monitored as training progresses.
When testing errors begin to increase, the training is stopped,
preventing overfitting of the training data. If overfitting occurs,
the ANN model will not have good predictive capabilities.

Another important issue with ANN modeling is model
complexity. Complexity is increased by adding additional
neurons to the hidden layer. A network with too few neurons
will not be able to map complex input–output relationships,
while a network with too many neurons adds complexity,

increases training time, and tends to overfit the training data
instead of generalizing. A simple to complex procedure is used
to determine network architecture. First, a simple network
architecture is chosen, usually containing one hidden layer
with a small number of neurons. If learning is slow or desired
accuracy is not achieved, additional neurons are added to
the hidden layer. The best network architecture is retained,
identifying the optimal network.

III. DOE METHODOLOGY

In order to train the EM-ANN models, a number of EM

simulations need to be performed. These simulation points

need to be chosen so that important input–output relationships

are presented to and learned by the EM-ANN model. Simple

models require less simulation points, while highly nonlinear

models require an increased number of simulations.

For some components, analytical models are possible and

input–output relationships may be expressed in closed form.

When the input–output relationships are too complex, ex-

perimental data may need to be obtained to characterize

the component. For many complex relationships, design of

experiments (DOE) methodology is used to systematically
study the input–output relationships of a component or process.

A designed experiment is a test or a series of tests in which
purposeful changes are made to the input variables of a process
or system so that the causes of changes in the output response
can be observed and identified [32]. Experimental data is then

used to build the model of the input–output relationship using
response surface methodology (RSM).

In RSM problems, the input–output relationships are un-
known. The first step is to approximate the input–output
relationships. This is usually done using low-order polynomi-
als or another fitting technique over a small portion of the input
variables ranges. However, when the process is influenced by
a large number of input variables, is highly nonlinear, has
more than one output variable, or when a global fit to the
response surface is needed, conventional fitting methods are
limited [3], [21].

An alternative approach for modeling of the response sur-
face is the use of ANN’s [33]. ANN’s are able to deal with
highly nonlinear and multiple input/output variables effec-
tively, providing excellent interpolative capabilities [27]–[30].
This allows development of a global model representing a
component.

Although response surface methods were developed for
regression analysis, they can be used to determine simulation
points which effectively cover the region of interest. When
building a model, one would like to perform as few EM
simulations as possible, for achieving the desired accuracy.
This implies starting with a low-order experimental design
and sequentially building up to higher-order designs by adding
additional simulation points.
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Fig. 2. Distribution of simulation points for a centrat composite experimental
design when the number of design variables is only two (xl and x2),

Central composite design approach [32], shown in Fig. 2
for a case with two design parameters, is used in this ,work
to obtain the initial structures to be simulated for EM-ANN
modeling. Central composite designs require 2k corner points,
one center point, and 2(k) axial points, where k is the number

of variable parameters. When it is found that the input–output
relationships of the component have not been sufficiently
captured, additional simulation points are added to fit the
higher order nonlinearities.

IV. COMPLETE EM-ANN MODELING

Complete EM-ANN modeling refers to the case when the
EM simulation results are used to train the ANN model ab
initio without making use of any other approximate model
for the component. Inputs for the EM-ANN models are fre-

quency and physical parameters, while outputs are the desired

S-parameters. Results of complete EM-ANN modeling are
presented for one and two port microstrip vias, stripline-
to-stripline dataset interconnects, and microstrip-to-microstrip
dataset interconnects.

A. Broadband GaAs Microstrip Vias

Fig. 3 shows the structure and some parameters of the one-
port via under consideration. The height of the substrate, the
dielectric constant, and all loss parameters are considered con-

stant for this example. The width of the incoming microstrip
line, IVz, the side of the square shaped via pad, IMP, and the

diameter of the via hole, Dvia, are the three variable design
parameters. Input variables for the EM-ANN and their ranges
are given in Table I.

EM simulations were performed from 5–55 GHz in 10-
GHz steps using a commercially available full-wave elec-
tromagnetic simulator (HP-Momentum) [34]. Via structures
for 15 DOE central composite points, as well as for 14
additional training/testing points spaced midway between the

TABLE I
FOR GaAs MICROSTRIPGROUNDVIA MODELINGVARIABLEINPOTPARAMETERS

1 -:--

hput Parameter Minimumvalue I Wximum Value
Frequenw J-l. <<r-w-l. I

J 4 -... .4 v...

I
..y.. 0.3 1.0

np 0.8
,, rs”1 90

REFERENCE ———+——— w. ~

t w: -=” -.. , -.” !

Fig. 3. GaAs microstrip ground via geometry. Substrate thickness =4 roil,

G = 12.9, tanb = 0.002,m~et~l = 4.1 x 107, and tmetal = 0.1 roil.
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Fig. 4. Comparison of EM-ANN model results with full-wave analysis of a
rnicrostrip 1-port via (training dataset). (a) Magnitude response with +0.003
error bounds and (b) phase response with +2 degree error bounds.

previous points, were simulated. In addition, 16 structures

were simulated for independent verification of the model after
completion of the training.

Best results were obtained by using ten neurons in the

hidden layer and the 15 central composite points, as well as
the 14 interior points for training the network. This training
required a total of 50 min time on a 486 computer (66 MHz).
Figs. 4 and 5 show the results for the training and verification
sets, respectively. Shown are the variations of the EM-ANN
results versus the HP-Momentum results, which should be
linear for a perfect fit.
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Fig. 6. Comparison of EM-ANN model results with full-wave analysis of a

B. Two-Port Microstr-ip Vias
2-portmicrostrip via (training dataset). (a) Magnitude response with +0.01
error bounds and (b) phase response with +2 degree error bounds.

In addition to the one-port vias described above; two-port

vias were also modeled using this approach. The structure and

input variables are the same as shown in Fig. 3 and in Table

I, except for an added port, making the structure symmetrical. 0.5 , /J
As with the one-port vias, best results were obtained by using
the 15 central composite points and the 14 interior points 0.4-

for training. Ten neurons were required for the hidden layer.
z
~ 0.3-

●

The training required 90 min time on a 486 computer (66 ~
MHz). Figs. 6 and 7 show S21 variations for the training and : 0.2-

w“
verification results, respectively,

It may be noted that the EM-ANN via models are able
0.1

to achieve accuracy comparable to EM simulation over the o
entire 5–55 GHz range. Since a full-wave analysis is used,
all the dielectric, conductor, and radiation losses, as well as
all parasitic effects, are included. The developed models may
now be used in linear analysis and in nonlinear analysis where
harmonic frequency components are generated.

z
z

C. Stripline-to-Stripline Dataset Interconnect u
%

Fig. 8 shows the structure of a 5042 stripline-to-stripline
3
iii

dataset interconnect for which an EM-ANN model has been w

developed. Reference planes are set at lV1ine/2 from the center
2
g

of the via. The variable design parameters are the diameter of Q

the via, Dvia, and the diameter of the ground access opening,

~gnd. All other parameters &re fixed. Model input variables 5

and their ranges are given in Table 11.

EM simulations were performed from 1–26 GHz in 5-GHz

steps. Interconnect structures for nine central composite points

50 60 70 80 90

LS,, (DEGREES) EM SIMULATION

(b)
and eight additional traininghesting points were simulated. In

Fig. 7. Comparisonof EM-ANNmodel results with full-waveanalysis of
addition, 12 structures were simulated for model verification 2-port microstrip via (verhicadon dataset). (a) Magnitude response with
purposes. +0.01 5 error boundsand (b) phase responsewith +2 degreeerror bounds.
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TABLE II
VARIABLEPARAMETERSFOR STRIPLINE-TO-STRIPLINEINTERCONNECTMODEL

Input ammeter~ P MaximumVake

Frequency 1 GH 26 GHz
Dfl

line 36:0
D@ Via ;.25 6

Reference Planes

T

Pine
K“’’’’’”50 ohm strip

IT

m41
Fig. 8. Stripfine-to-stripline interconnect structure with Wline = 13.675
roil, Zo = 50 ohms, c, = 2.94, tan~ = 0.0012, tmetal= 1.4 roil,

c~.~aI = 5.7 x 107, arrd 17 = 20 roil.

Using the nine central composite points plus the eight

additional interior points for training the model yielded the best
results, Nine neurons were used in the hidden layer. Training

time w’as 115 min on a 486 computer (66 MHz). Figs. 9 and
10 show the S21 results for the training and verification sets,
respectively. As with the GaAs ground vias, excellent results
were obtained.

D. Microstrip-to-Microstrip dataset Interconnect

Fig. 11 shows the structure of a 50-Sl rnicrostrip-to-

microstrip dataset interconnect for which an EM-ANN model

has been developed. Reference planes are set at Wb.t/2

and WtOP/2 from the center of the via for the bottom

and top microstrip lines, respectively. The variable design
parameters are the diameter of the via, Dvia, and the length
of the overhang for the top microstrip line, LOIT. All other
parameters are fixed. Model input variables and their ranges
are given in Table III.

EM simulations were performed from 2–12 GHz in 2-GHz
steps. Interconnect structures for nine central composite points
and eight additional trainingltesting points were simulated. In
addition, 16 structures were simulated for model verification
purposes.

Using the nine central composite points plus the eight
additional interior points for training the model yielded the best
results. Eight neurons were used in the hidden layer. Training
time was 90 min on a 486 computer (66 MHz). Figs. 12
and 13 show the SZI results for the training and verification
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Fig. 9. Comparison of EM-ANN model results with full-wave anafysis of
a stripline-to-stripline interconnect (training dataset). (a) IS21 I response with
+0.003 error bounds and (b) Ls2 I response with +2 degree error bounds.

sets, respectively. As with the previously developed
excellent results were obtained.

V. HYBRID (AS) EM-ANN MODELING

models,

Many times an approximate model may already exist for
a component. In cases where the existing model is not as
accurate as desired, this approximate model can be used
to create a hybrid EM-ANN model. That is, one can use
something already known about the component to simplify the

input–output relationships for training the EM-ANN model.
The hybrid EM-ANN model is formed by generating the

difference in S-parameters between the existing approximate
model and the EM simulation results (AS). The AS data is
then used to train the EM-ANN model. Physical pamuneters are
still used as the inputs of the EM-ANN model, but the output
has been replaced by AS. This results in a smaller range of the
output variables, AS compared to complete S-parameters, and
a simpler input–output relationship. This simpler input–output
relationship requires less EM simulation points to capture
important data trends. This simplification is very desirable

since EM simulations consume a major portion of the time
spent on developing an EM-ANN model.

Example—Two-Port Broadband GaAs Microstrip Via: To
demonstrate hybrid EM-ANN modeling, the two-port broad-
band GaAs microstrip via is used. Complete EM-ANN mod-
eling results have been shown in Section IV. Here, a hybrid
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EM-ANN model is developed and compared to the complete

EM-ANN modeling results.

An existing approximate model for the inductance of a

microstrip via element is given in [3]. The existing model was

found to give reasonable results at lower frequencies (<15

GHz), but as frequency increased, errcrcs between the model

and EM simulation increased also. Inaccuracies of the model,

especially at higher frequencies, may be due to pad inductance,
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Fig. 12. Comparison of EM-ANN model results with full-wave analysis of
a microstrip-to-microstrip interconnect (training dataset). (a) IS2 1 \ response
with +0. 001 error bounds and (b) LS21 response with +1 degree error
bounds.

TABLE III
VARIABLEPARAMETERSFORMICROSTRIP-TO-MICROSTRtPINTERCONNECTMODEL

Input Parameter MirtimurnValue Mmitmnn Vrdtre

Frequency 2G Hz 12 GHz

I&
0.9

15 trtil

pad capacitance, discontinuity effects, and radiation from the

via-hole [1], [35].

The AS parameters were evaluated for the structures given

in Section IV and then used for training the hybrid EM-ANN

model. Results for the hybrid and complete modeling using
only 15 central composite training points are shown in Table
IV. Ten neurons were used in the hidden layer for both models.

The hybrid model required 20 min training time while the
“complete” model began overfitting after just 2 min of training

time on a 486 computer (66 MHz). Errors are significantly
lower for the hybrid EM-ANN model.

To further show the advantages of the hybrid model over

the complete model, models were developed using 15 central

composite points and 14 additional interior points for training.

Results are shown in Table V. Ten neurons were used in the

hidden layer. Training times were 80 min and 90 min for the

hybrid and complete EM-ANN models, respectively.
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COMPARISONOF HYB

Hybrid MedeL

avg. absolute error

standarddeviation

complete Modek

avg. absolute error

standard deviation

TABLE IV
IDAND COMPLETEEM-ANN M

Training Dataset

I SJ /_s,l 1s,,1 I_S,,

0.0033 0.80° 0.0045 0.74°

0.0031 0.63° 0.0041 0.62°

0.0124 1.25° 0.0246 1.63°

0.0114 1.15° 0.0209 1.55°

JDELS(15 TRAININGPOINTS)

-

0.0182 1.34° 0.0284 2.34”

0.0213 1.11° 0.0282 2.06° I
TABLE V

COMPARISONOF HYBRIDAND COMPLETEEM-ANN MODELS (29 TRAININGPOINTS)

Hybrid ModeL

avg. absolute e~or

standard deviation

Complete ModeL

avg. absolute error

standarddeviation

Training Dataset

Is,ll /_sl, 1s,,1 l_s21

0.0016 0.41° 0.0026 0.46°

0.0015 0.36° 0.0029 0.41°

0.0036 0.41° 0.0068 0.44”

0.0033 0.40° 0.0049 0.47°

The hybrid model with 29 training points shows improve-
ment in most error categories over the hybrid model with

15 training points. Significant improvement is seen in the

complete EM-ANN model error results. Note that most hybrid
EM-ANN errors are significantly lower than complete model
errors.

A significant advantage of the hybrid modeling technique
is apparent by comparing the error results of the hybrid
model with 15 training points to the complete model with
29 training points. Errors in both cases are of the same order.
The advantage is seen by noting that the number of EM

simulations needed to train the hybrid model for the given
accuracy is almost half that needed for the complete model.
This results in a time saving of 5 h and 51 min (11 h 35 rein:

5 h 44 rein) on an HP 700 workstation for this example. Thus

we can conclude that the hybrid (AS) modeling approach
is much more efficient for developing EM-ANN models.

VI. INTEGRATIONOF EM-ANN
MODEL WITH A CIRCUIT SIMULATOR

After training, the EM-ANN models were integrated into a
microwave network simulator (HP-MDS) [36]. Fig. 14 com-
pares the new EM-A~ one-port via model (NET1) with HP-
Momentum results and the current MSVIA element available in
HP-MDS. Note that the MSVIA reference plane is at the center
of the hole, while our reference plane is at the edge of the pad.
Therefore, a more accurate model, also shown in Fig. 14, may
be constructed by adding additional HP-MDS elements such
as MSSTEP, MSTL, and MSOC to account for the pad length

VerificationDa@et

Islll /_s*l IS2,1 /_S,,

0.0024 0.58° 0.0031 0.64°

00028 0.57° 0.0033 0.78°
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0.0038 0,35° 0.0092 0.77°
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Fig. 13. Comparison of EM-ANN model results with full-wave amifysis of a
microstrip-to-microstrip interconnect (verification dataset). (a) \SZI I response
with +0. 001 error bounds and (b) ,LS21 response with *1 degree error
bounds.
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Fig. 14. Comparison of Netl model, HP-Momentum, Hp-MDS
via element MSVIA, and MSVIA with added components. GaAs
via with s, = 12.9,~,Ub = 4 roil, tme~al= 0.1 roil,

a~,t.l = 4. I x 107, tan6 = 0.002, Wl/Wp c: 0.3875, Dvia/Wp = 0.4,
and W1/~~Ub = 0.3375.

TABLE VI
COMPARISONOF SIMULATIONTIMESFORTHEGaAs VIADESCRIBEDINFIG. 14

Model WtnntationTime
HP-MDS, MSVIA 10.30Sec
HP-Momentnm 12.48 mirt

Netl (EM-ANN Medel) 10.33 SW

and the step in width. However, even this constructed HP-
MDS model cannot accurately characterize the via hole over
the entire range of the input variables, whereas the EM-ANN
via model can. Excellent results are achieved by the EM-
ANN models when compared to HP-Momentum simulations.
Simulation times for NET1, MSVIA, and HP-Momentum on
an HP 700 workstation are shown in Table VI. Note that the
new EM-ANN model does not require a significant increase
in simulation time over the current HP-MDS model.

VII. OPTIMIZATIONOF COMPONENTSTRUCTURE

Once an EM-ANN model has been. developed, it can be

used to find the optimal physical structure of a component for a
given application. This can be accomplished by using standard

techniques such as random and gradient optimization [36].
To demonstrate the usefulness of optimization, an example
is considered.

A. Stripline-to-Stripline Dataset Interconnect

For this EM-ANN model, two variable physical parameters

are the diameters of the via and ground access opening. This
structure has been considered in [12] and it was found that
good performance was obtained as long as the diameter of
the via was large and the ratio of the diameter of the ground
access to that of the via was near 4.2:1. In fact, this ratio is
the same as that of the inner and outer conductors of a 50-fl
coaxial line with e, = 2.94. However, only a limited number
of structures were simulated. One would expect that the ratio
for the stripline-to-stripline interconnect might be less than for
a coaxial line, increasing the capacitance of the structure in
order to compensate for only having a partial outer conductor.

Initial values for the physical parameters were set at 0.3

for Dvia/W1 and 6.0 for ~g.d/~vi.. These are clearly not
optimal values. Optimization was completed by maximizing

the transmission coefficient yielding Dvia/W1 = 0.77 and
~~.d/Dvia = 3.4. These results agree well with our expecta-
tions as mentioned earlier.

VIII. CONCLUSION

We have presented a novel approach for accurate

and efficient modeling of MMIC components by using
electromagnetically -trained ANN software modules. The

approach has been verified by developing models for
microstrip via and interconnects in dataset circuits and
integrating these models in a commercially available

microwave circuit simulator. Two methods, complete EM-
ANN modeling and hybrid (AS) EM-ANN modeling, have
been developed. The hybrid (AS) EM-ANN modeling that
makes use of existing approximate models for components
is shown to be a more efficient approach. It has been

demonstrated that EM-ANN models can be used for
optimizing the component structure efficiently. The proposed

technique is capable of providing CAD models for components

for which available models are not accurate over the desired
range of operation.
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